recipe bioconductor-ularcirc

Shiny app for canonical and back splicing analysis (i.e. circular and mRNA analysis)

Homepage:

https://bioconductor.org/packages/3.20/bioc/html/Ularcirc.html

License:

file LICENSE

Recipe:

/bioconductor-ularcirc/meta.yaml

Ularcirc reads in STAR aligned splice junction files and provides visualisation and analysis tools for splicing analysis. Users can assess backsplice junctions and forward canonical junctions.

package bioconductor-ularcirc

(downloads) docker_bioconductor-ularcirc

versions:
1.24.0-01.20.0-01.18.0-01.16.0-01.12.0-01.10.0-01.8.0-11.8.0-01.6.0-0

1.24.0-01.20.0-01.18.0-01.16.0-01.12.0-01.10.0-01.8.0-11.8.0-01.6.0-01.4.0-01.2.0-11.0.0-0

depends bioconductor-annotationdbi:

>=1.68.0,<1.69.0

depends bioconductor-annotationhub:

>=3.14.0,<3.15.0

depends bioconductor-biocgenerics:

>=0.52.0,<0.53.0

depends bioconductor-biostrings:

>=2.74.0,<2.75.0

depends bioconductor-bsgenome:

>=1.74.0,<1.75.0

depends bioconductor-genomeinfodb:

>=1.42.0,<1.43.0

depends bioconductor-genomeinfodbdata:

>=1.2.0,<1.3.0

depends bioconductor-genomicalignments:

>=1.42.0,<1.43.0

depends bioconductor-genomicfeatures:

>=1.58.0,<1.59.0

depends bioconductor-genomicranges:

>=1.58.0,<1.59.0

depends bioconductor-mirbase.db:

>=1.2.0,<1.3.0

depends bioconductor-organism.dplyr:

>=1.34.0,<1.35.0

depends bioconductor-plotgardener:

>=1.12.0,<1.13.0

depends bioconductor-s4vectors:

>=0.44.0,<0.45.0

depends r-base:

>=4.4,<4.5.0a0

depends r-data.table:

>=1.9.4

depends r-dt:

depends r-ggplot2:

depends r-ggrepel:

depends r-gsubfn:

depends r-moments:

depends r-r.utils:

depends r-shiny:

depends r-shinydashboard:

depends r-shinyfiles:

depends r-shinyjs:

depends r-yaml:

requirements:

additional platforms:

Installation

You need a conda-compatible package manager (currently either micromamba, mamba, or conda) and the Bioconda channel already activated (see set-up-channels).

While any of above package managers is fine, it is currently recommended to use either micromamba or mamba (see here for installation instructions). We will show all commands using mamba below, but the arguments are the same for the two others.

Given that you already have a conda environment in which you want to have this package, install with:

   mamba install bioconductor-ularcirc

and update with::

   mamba update bioconductor-ularcirc

To create a new environment, run:

mamba create --name myenvname bioconductor-ularcirc

with myenvname being a reasonable name for the environment (see e.g. the mamba docs for details and further options).

Alternatively, use the docker container:

   docker pull quay.io/biocontainers/bioconductor-ularcirc:<tag>

(see `bioconductor-ularcirc/tags`_ for valid values for ``<tag>``)

Download stats