- recipe scib
Evaluating single-cell data integration methods
- Homepage:
- Documentation:
- License:
MIT / MIT
- Recipe:
- Links:
- package scib¶
- versions:
1.1.7-0
,1.1.6-0
,1.1.5-1
,1.1.5-0
,1.1.4-1
,1.1.4-0
- depends anndata:
>=0.7.2
- depends deprecated:
- depends h5py:
- depends igraph:
>=0.10
- depends leidenalg:
- depends libgcc:
>=13
- depends libstdcxx:
>=13
- depends llvmlite:
- depends matplotlib-base:
- depends numpy:
- depends pandas:
<2
- depends pydot:
- depends python:
>=3.10,<3.11.0a0
- depends python_abi:
3.10.* *_cp310
- depends scanpy:
>=1.5,<1.10
- depends scikit-learn:
- depends scikit-misc:
- depends scipy:
- depends seaborn:
- depends umap-learn:
- requirements:
- additional platforms:
Installation
You need a conda-compatible package manager (currently either micromamba, mamba, or conda) and the Bioconda channel already activated (see set-up-channels).
While any of above package managers is fine, it is currently recommended to use either micromamba or mamba (see here for installation instructions). We will show all commands using mamba below, but the arguments are the same for the two others.
Given that you already have a conda environment in which you want to have this package, install with:
mamba install scib and update with:: mamba update scib
To create a new environment, run:
mamba create --name myenvname scib
with
myenvname
being a reasonable name for the environment (see e.g. the mamba docs for details and further options).Alternatively, use the docker container:
docker pull quay.io/biocontainers/scib:<tag> (see `scib/tags`_ for valid values for ``<tag>``)
Download stats¶
Link to this page¶
Render an badge with the following MarkDown:
[![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/scib/README.html)