- recipe bioconductor-dapar
Tools for the Differential Analysis of Proteins Abundance with R
- Homepage:
- License:
Artistic-2.0
- Recipe:
The package DAPAR is a Bioconductor distributed R package which provides all the necessary functions to analyze quantitative data from label-free proteomics experiments. Contrarily to most other similar R packages, it is endowed with rich and user-friendly graphical interfaces, so that no programming skill is required (see `Prostar` package).
- package bioconductor-dapar¶
- versions:
1.34.2-0
,1.32.2-0
,1.30.0-0
,1.26.0-0
,1.24.3-0
,1.22.6-0
,1.22.0-0
,1.20.2-0
,1.18.1-0
,1.34.2-0
,1.32.2-0
,1.30.0-0
,1.26.0-0
,1.24.3-0
,1.22.6-0
,1.22.0-0
,1.20.2-0
,1.18.1-0
,1.16.7-0
,1.14.4-0
- depends bioconductor-annotationdbi:
>=1.64.0,<1.65.0
- depends bioconductor-biobase:
>=2.62.0,<2.63.0
- depends bioconductor-clusterprofiler:
>=4.10.0,<4.11.0
- depends bioconductor-dapardata:
>=1.32.0,<1.33.0
- depends bioconductor-graph:
>=1.80.0,<1.81.0
- depends bioconductor-impute:
>=1.76.0,<1.77.0
- depends bioconductor-limma:
>=3.58.0,<3.59.0
- depends bioconductor-mfuzz:
>=2.62.0,<2.63.0
- depends bioconductor-msnbase:
>=2.28.0,<2.29.0
- depends bioconductor-org.sc.sgd.db:
>=3.18.0,<3.19.0
- depends bioconductor-preprocesscore:
>=1.64.0,<1.65.0
- depends bioconductor-vsn:
>=3.70.0,<3.71.0
- depends r-apcluster:
- depends r-base:
>=4.3,<4.4.0a0
- depends r-cluster:
- depends r-cp4p:
- depends r-dendextend:
- depends r-diptest:
- depends r-doparallel:
- depends r-dplyr:
- depends r-factoextra:
- depends r-factominer:
- depends r-forcats:
- depends r-foreach:
- depends r-ggplot2:
- depends r-gplots:
- depends r-highcharter:
- depends r-igraph:
- depends r-imp4p:
- depends r-knitr:
- depends r-lme4:
- depends r-matrix:
- depends r-multcomp:
- depends r-norm:
- depends r-openxlsx:
- depends r-purrr:
- depends r-rcolorbrewer:
- depends r-readxl:
- depends r-reshape2:
- depends r-scales:
- depends r-stringr:
- depends r-tibble:
- depends r-tidyr:
- depends r-tidyverse:
- depends r-vioplot:
- depends r-visnetwork:
- requirements:
Installation
You need a conda-compatible package manager (currently either micromamba, mamba, or conda) and the Bioconda channel already activated (see set-up-channels).
While any of above package managers is fine, it is currently recommended to use either micromamba or mamba (see here for installation instructions). We will show all commands using mamba below, but the arguments are the same for the two others.
Given that you already have a conda environment in which you want to have this package, install with:
mamba install bioconductor-dapar and update with:: mamba update bioconductor-dapar
To create a new environment, run:
mamba create --name myenvname bioconductor-dapar
with
myenvname
being a reasonable name for the environment (see e.g. the mamba docs for details and further options).Alternatively, use the docker container:
docker pull quay.io/biocontainers/bioconductor-dapar:<tag> (see `bioconductor-dapar/tags`_ for valid values for ``<tag>``)
Download stats¶
Link to this page¶
Render an badge with the following MarkDown:
[![install with bioconda](https://img.shields.io/badge/install%20with-bioconda-brightgreen.svg?style=flat)](http://bioconda.github.io/recipes/bioconductor-dapar/README.html)