recipe bioconductor-rjmcmcnucleosomes

Bayesian hierarchical model for genome-wide nucleosome positioning with high-throughput short-read data (MNase-Seq)

Homepage:

https://bioconductor.org/packages/3.18/bioc/html/RJMCMCNucleosomes.html

License:

Artistic-2.0

Recipe:

/bioconductor-rjmcmcnucleosomes/meta.yaml

This package does nucleosome positioning using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

package bioconductor-rjmcmcnucleosomes

(downloads) docker_bioconductor-rjmcmcnucleosomes

versions:
1.26.0-01.24.0-01.22.0-11.22.0-01.18.0-21.18.0-11.18.0-01.16.0-01.14.0-1

1.26.0-01.24.0-01.22.0-11.22.0-01.18.0-21.18.0-11.18.0-01.16.0-01.14.0-11.14.0-01.12.0-01.10.0-01.8.0-11.6.0-0

depends bioconductor-biocgenerics:

>=0.48.0,<0.49.0

depends bioconductor-biocgenerics:

>=0.48.1,<0.49.0a0

depends bioconductor-biocparallel:

>=1.36.0,<1.37.0

depends bioconductor-biocparallel:

>=1.36.0,<1.37.0a0

depends bioconductor-consensusseeker:

>=1.30.0,<1.31.0

depends bioconductor-consensusseeker:

>=1.30.0,<1.31.0a0

depends bioconductor-genomeinfodb:

>=1.38.0,<1.39.0

depends bioconductor-genomeinfodb:

>=1.38.1,<1.39.0a0

depends bioconductor-genomicranges:

>=1.54.0,<1.55.0

depends bioconductor-genomicranges:

>=1.54.1,<1.55.0a0

depends bioconductor-iranges:

>=2.36.0,<2.37.0

depends bioconductor-iranges:

>=2.36.0,<2.37.0a0

depends bioconductor-s4vectors:

>=0.40.0,<0.41.0

depends bioconductor-s4vectors:

>=0.40.2,<0.41.0a0

depends gsl:

>=2.7,<2.8.0a0

depends libblas:

>=3.9.0,<4.0a0

depends libgcc-ng:

>=12

depends liblapack:

>=3.9.0,<4.0a0

depends libstdcxx-ng:

>=12

depends r-base:

>=4.3,<4.4.0a0

depends r-rcpp:

>=0.12.5

requirements:

Installation

You need a conda-compatible package manager (currently either micromamba, mamba, or conda) and the Bioconda channel already activated (see set-up-channels).

While any of above package managers is fine, it is currently recommended to use either micromamba or mamba (see here for installation instructions). We will show all commands using mamba below, but the arguments are the same for the two others.

Given that you already have a conda environment in which you want to have this package, install with:

   mamba install bioconductor-rjmcmcnucleosomes

and update with::

   mamba update bioconductor-rjmcmcnucleosomes

To create a new environment, run:

mamba create --name myenvname bioconductor-rjmcmcnucleosomes

with myenvname being a reasonable name for the environment (see e.g. the mamba docs for details and further options).

Alternatively, use the docker container:

   docker pull quay.io/biocontainers/bioconductor-rjmcmcnucleosomes:<tag>

(see `bioconductor-rjmcmcnucleosomes/tags`_ for valid values for ``<tag>``)

Download stats